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Abstract. In this paper we introduce the local Nori fundamental group scheme of a
reduced scheme or algebraic stack over a perfect field k. We give particular attention
to the case of fields: to any field extension K{k we attach a pro-local group scheme
over k. We show how this group has many analogies, but also some crucial differences,
with the absolute Galois group. We propose two conjectures, analogous to the classical
Neukirch-Uchida Theorem and Abhyankar Conjecture, providing some evidence in their
favor. Finally we show that the local fundamental group of a normal variety is a quotient
of the local fundamental group of an open, of its generic point (as it happens for the étale
fundamental group) and even of any smooth neighborhood.

Introduction

Let k be a perfect field of characteristic p ě 0. Given a k-variety X with a rational point
x P Xpkq, Nori constructed a profinite group scheme πNpX, xq satisfying the following
universal property: there exists a natural bijection

Homkpπ
N
pX, xq, Gq ÝÑ tpointed G-torsors pP, pq Ñ pX, xqu

for all (pro-)finite group schemes G over k. This was later called the Nori fundamental
group of X at x. Since every finite group scheme is an extension of an étale group scheme
by a local one (recall that a group scheme is called local, or infinitesimal, if it is finite
and connected), it is also interesting to focus on both subclasses. One finds that the
maximal pro-étale quotient πN,étpX, xq and the maximal pro-local quotient πLpX, xq of
Nori’s fundamental group satisfy the universal properties restricted to the subclasses.

In the same way as Grothendieck’s étale fundamental group “parametrizes” Galois étale
covers, Nori’s fundamental group “parametrizes” pointed torsors under finite group schemes.
One important difference is the necessity to label the torsors with a base point in Nori’s
version. This has regrettable consequences: for instance πNpSpec k, xq “ 1 even if k is not
algebraically closed. One of the purposes of the present paper is to remove the need for a
rational point. For any reduced scheme or algebraic stack X over k we will define the local
Nori fundamental group scheme πLpX{kq, a pro-local group scheme over k with bijections
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functorial in the (pro)-local group scheme G:

Homkpπ
L
pX{kq, Gq ÝÑ tG-torsors P Ñ Xu.

This definition makes sense because the category of torsors under local group schemes is
equivalent to a set, that is it is a groupoid with only identities as automorphisms, unlike
what happens for general finite group schemes.

The emancipation from the need of a rational point in the theory of Nori’s fundamental
group was also addressed by Borne and Vistoli [BV15]. Their idea was to use finite gerbes
instead of finite group schemes. The so-called Nori fundamental gerbe thus obtained re-
covers the Nori fundamental group as soon as one fixes a rational point. In [TZ19, §7]
the same theory was worked out for local gerbes, obtaining the local Nori fundamental
gerbe (see 2.2). It turns out that the gerbe “is exactly” the local Nori fundamental group
without the need of any point, because a local gerbe over a perfect field is uniquely and
therefore canonically neutral. This is actually how we come up with the above definition
(see 2.7). Moreover, as a consequence of [TZ19] there is an explicit Tannakian description
of the representation category RepπLpX{kq in terms of vector bundles on X (see 2.4).

∴

As an evidence that the local Nori fundamental group has valuable arithmetic content,
we shall see that it is an extremely interesting object when X is the spectrum of a field K.
In this case, we use the simplified notation

πL
pK{kq ¨̈“ πL

pSpecK{kq.

Due to the parallel between the local Nori fundamental group of a field K and its absolute
Galois group, it is desirable to see to what extent their behaviours resemble or differ. We
approach the question from three viewpoints: the Galois correspondence, the anabelian
philosophy, and the inverse Galois problem. In the rest of the introduction, we present our
findings: two main results and two conjectures with piece of evidence supporting them.
Our first main theorem is a part of the Galois correspondence.

Theorem I. Let k be a perfect field and K{k a field extension. Denote by PIpKq the
totally ordered set of purely inseparable extensions of K. The mapping

PIpKq tsubgroups of πLpK{kqu

E{K pπLpE{kq Ñ πLpK{kqq.

is well-defined and an order-reversing embedding, that is πLpE1{kq Ď πLpE2{kq Ď πLpK{kq
if and only if K Ď E2 Ď E1 for all E1, E2 P PIpKq.

It would be interesting to understand the relation between the above embedding and
previous classifications of purely inseparable extensions, starting from the Jacobson corre-
spondence and its early developments (see [Ja44], [Ge64], [GZ70], [Ch71], [He71], [Mo75])
until very recent generalizations (see [Ba18] and [BW20]).

We also show that the role played in Galois Theory by separably closed fields is played
in the theory of the local Nori fundamental group by perfect fields, in the precise sense
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that K is perfect if and only if πLpK{kq “ 1 (see 1.4). However, exceeding enthusiasm
for the desired analogy should not reign. Indeed, we prove that the map in Theorem I is
highly non surjective unlessK is perfect. Moreover, for a nontrivial finite purely inseparable
extension L{K the subgroup πLpL{kq never has finite index in πLpK{kq (see 1.6).

Nevertheless, we expect πLpE{kq to carry a lot of information on the field E and in some
cases to be able to recover E. We propose the following anabelian-style conjecture.

Conjecture I. Let k be a perfect field and K,E finitely generated field extensions of k.
Assume that K and E are not finite over k. Then

πL
pK{kq » πL

pE{kq ùñ K » E

(isomorphism of k-group schemes on the left, isomorphism of k-extensions on the right).

This is the local analogue of (a part of) the Neukirch-Uchida Theorem:

Theorem ([Uch77], [Pop94], [Pop02], [Mo99]). If K,E are number fields, then

GalpKq » GalpEq ùñ K » E.

If K,E are infinite and finitely generated fields over Fp then

GalpKq » GalpEq ùñ Kperf
» Eperf

where p´qperf denotes the perfect closure functor of fields.

Theorem I aims to be a baby case of Conjecture I. More generally we show that, in the
hypothesis of Conjecture I, a k-map K Ñ E induces an isomorphism πLpE{kq Ñ πLpK{kq
if and only if it is an isomorphism (see 2.19). The map πLpE{kq Ñ πLpK{kq is actually a
quotient for separable extensions E{K (see 3.5). The reason why we expect Conjecture I
to be true is that the explicit description of RepπLpK{kq seems to tell a lot about the
arithmetic of K. For instance, we construct isomorphisms of groups:

HompπL
pK{kq,Gmq » pK

perf
q
˚
{K˚ and HompπL

pK{kq,Gaq » Kperf
{K.

Multiplicative and additive structures on Kperf are determined by πLpK{kq, yet we still
see no way to relate them for the moment. The above groups can be described in terms of
one-dimensional representations of πLpK{kq and extensions of the trivial representation re-
spectively. We therefore expect that crucial information is contained in higher dimensional
representations.

Finally, in the spirit of the inverse Galois problem, we consider the fundamental example
given by the field of rational functions in one variable, and we state the following conjecture.

Conjecture II. Let k be a perfect field. Then any local group scheme G over k is a
quotient of πLpkptq{kq, that is there exists a G-torsor P Ñ Spec kptq which is not induced
by a torsor under a strict subgroup of G.

This is analogous to the ”generic Abhyankar conjecture” for the absolute Galois group:

Theorem ([Har94]). Let k be an algebraically closed field. Then any finite group G is a
quotient of Galpkptqq, that is there exists a Galois extension of kptq with group G.
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We call Conjecture II the local Abhyankar conjecture. A very similar, stronger conjecture
was stated in [Ot18, Question 1.1] and proved in several cases in the same paper and in
[Ot19], [OTZ20]. The setting is slightly different: for an affine k-curve U , Otabe [Ot18,
Question 1.1] predicts which local group schemes over k appear as a quotient of πLpU{kq,
just like the general Abhyankar conjecture predicts which finite groups occur as a quotient
of the étale fundamental group π1pU, uq. Our contribution here is in proving that the
relation between the global and generic local Abhyankar conjectures is similar to that in
the non-local case. Namely, the generic local fundamental group surjects onto the global
one. We prove more generally the following result:

Theorem II. Let X be a normal, quasi-separated and irreducible algebraic stack over k
and V Ñ X a map from a reduced algebraic stack. If V Ñ X has non empty reduced
geometric generic fiber then the map

πL
pV{kq Ñ πL

pX {kq

is surjective. This is the case, for instance, if V Ñ X is either
(1) flat, geometrically reduced and has an open image (e.g. an open embedding);
(2) it exhibits V as a generic point of a smooth atlas of X .

In particular, all groups considered in [Ot18] and [OTZ20] satisfy Conjecture II. Finally
we show that Conjecture II implies the same result for many other fields. Indeed we show
that πLpkpptqq{kq Ñ πLpkptq{kq is surjective (see 3.6) and that, ifK is any finitely generated
field extension of k of positive transcendence degree, there exists an indeterminate t P K
such that also πLpK{kq Ñ πLpkptq{kq is surjective (see 3.7).

The paper is divided as follows. In Section 1 we define the local Nori fundamental group
for a field using Tannaka Theory, and we prove that Theorem I holds for this group scheme.
In Section 2 we introduce the general local Nori fundamental group via the local Nori
fundamental gerbe, and we prove the connection with torsors via the universal property
as stated in the beginning in the introduction. Finally in Section 3 we discuss surjectivity
results about the local fundamental group, and we prove Theorem II.

Acknowledgement. We would like to thank D. Tossici, S. Otabe and A. Vistoli for
helpful conversations and suggestions received.

1. The local Nori fundamental group of a field

Let k be a perfect field of positive characteristic p. Given a field K we will denote by
Kperf its perfect closure and by VectpKq the category of finite dimensional K-vector spaces.
The aim of this section is to give a direct definition of the local fundamental group scheme
of a field extension K{k that avoids torsors. Then we prove that with this definition, the
conclusion of Theorem I holds. The equivalence between the two definitions, namely the
verification of the universal property, is proved later (see 2.13).
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Definition 1.1. Let K{k be a field extension. We define D8pK{kq as the category whose
objects are triples pV,W, ψq, where V P VectpKq, W P Vectpkq and

ψ : Kperf
bK V Ñ Kperf

bk W

is a Kperf-linear isomorphism. An arrow pV,W, ψq Ñ pV 1,W 1, ψ1q in D8pK{kq is a pair
pa, bq composed of a K-linear map a : V Ñ V 1 and a k-linear map b : W Ñ W 1 which are
compatible with ψ and ψ1.

The category D8pK{kq with its natural tensor product and k-linear structure is a neutral
k-Tannakian category with the forgetful functor D8pK{kq ÝÑ Vectpkq as the fiber functor.
We define the local Nori fundamental group πLpK{kq ofK{k as the Tannakian group scheme
associated with D8pK{kq.

Lemma 1.2. If L{K is a purely inseparable extension of fields over k then the induced
map of group schemes πLpL{kq Ñ πLpK{kq is a closed embedding.

Proof. By [DM82, Prop. 2.21 (b)] it is enough to show that the pullback functor

D8pK{kq Ñ D8pL{kq
is essentially surjective. Let pV,W, φq P D8pL{kq. Clearly there is an isomorphism
pV,W, φq – pL‘m, k‘m, ϕq P D8pL{kq. Now consider the isomorphism

ϕ : pLperf
q
‘m
ÝÑ pLperf

q
‘m.

Since L{K is purely inseparable, we can identify Kperf with Lperf . In this case it is easy to
see that pK‘m, k‘m, ϕq P D8pK{kq is sent to pL‘m, k‘m, ϕq. �

Proposition 1.3. Let K{k be a field extension. Then there is a canonical isomorphism

PicpD8pK{kqq » Homkpπ
L
pK{kq,Gmq » pK

perf
q
˚
{K˚.

Proof. The first isomorphism exists since both sides are the group of isomorphism classes
of 1-dimensional representations of πLpK{kq. There is a group homomorphism

pKperfq˚ PicpD8pK{kqq

φ pK, k, φq.

It is easy to see that it is surjective and that its kernel is K˚. �

Proof of Theorem I. By 1.2 we see that the map in the statement is well defined. All
elements of PIpKq has a unique embedding in Kperf . Thus we have to prove that, if
K Ď L1, L2 Ď Kperf and πLpL1{kq Ď πLpL2{kq Ď πLpK{kq, then L2 Ď L1.

By 1.3 and the commutative diagram of group schemes

πLpL1{kq πLpL2{kq

πLpK{kq

φ

sL1
sL2
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we get a commutative diagram of abelian groups

pKperfq˚{L˚2 pKperfq˚{L˚1

pKperfq˚{K˚

ϕ

a b

where sLi
is the inclusion πLpLi{kq Ď πLpK{kq. In particular we conclude that a and b are

induced on the perfect closure by K Ď L2 and K Ď L1 respectively, that is a and b are
induced by the identity map. Then it is clear that bpL˚2{K˚q “ 1, as apL˚2{K˚q “ 1. Thus
we have L˚2{K˚ Ď L˚1{K

˚. This shows the inclusion L2 Ď L1. �

Corollary 1.4. Let K{k be a field extension. Then K is perfect if and only if πLpK{kq “ 1.

Proof. If πLpK{kq “ 0, then from Theorem I we see that PIpKq has just one element, that
is K is perfect. Now assume that K is perfect, that is Kperf “ K. If pV,W, φq P D8pK{kq,
then φ : V ÝÑ W bk K is an isomorphism. It is easy to see that

pV,W, φq
pφ,idq
ÝÝÝÑ pW bk K,W, idq

is an isomorphism. This means that Vectpkq “ D8pK{kq, that is πLpK{kq “ 1. �

Lemma 1.5. If G is an affine group scheme over k then there exists a canonical surjective
map

G ÝÑ DpHompG,Gmqq

where Dp´q is the diagonalizable group over k associated with an abelian group, which is
universal among all maps to diagonalizable group schemes.

Proof. There is a natural isomorphism

HompG,DpHqq » HompH,HompG,Gmqq

which implies the existence of a map

δ : GÑ DpHompG,Gmqq

universal for maps to diagonalizable group schemes. Since Impδq is diagonalizable and a
closed subgroup of DpHompG,Gmqq, by the universal property it follows that δ is surjective.

�

Example 1.6. Let K be a field extension of k which is not perfect. We claim that:
(1) there are subgroups H of πLpK{kq which are not of the form πLpL{kq for some

purely inseparable extension L{K;
(2) if L{K is a nontrivial purely inseparable extension, then the quotient fpqc space

πLpK{kq{πLpL{kq is not finite over k.
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From 1.3 and 1.5 we obtain a canonical surjective map πLpK{kq ÝÑ DppKperfq˚{K˚q which
is universal among maps to a diagonalizable group scheme. Given a purely inseparable
extension L{K we obtain a commutative diagram

πLpL{kq πLpK{kq πLpK{kq{πLpL{kq

DppLperfq˚{L˚q DppKperfq˚{K˚q DpL˚{K˚q

In particular if K˚ Ď Q Ď pKperfq˚ is a subgroup not of the form L˚ for some purely
inseparable extension L of K then the inverse image of DppKperfq˚{Qq Ď DppKperfq˚{K˚q

along πLpK{kq ÝÑ DppKperfq˚{K˚q cannot be a local fundamental group. For p2q instead
one just has to show that L˚{K˚ is not finitely generated. Indeed one observes that the
vertical map on the right is faithfully flat because all other surjective maps are affine and
faithfully flat (see [SP21, 036J]).

In order to have a concrete example for (1) and also show p2q it is enough to prove that,
if L “ KrXs{pXp ´ λq with λ P K ´ Kp, then L˚{K˚ is not finitely generated. Since
L˚{K˚ is an Fp-vector space it is enough to show that L˚{K˚ is infinite. Set vn “ 1`λnX
for n P N. We claim that all these elements are different in L˚{K˚. If vm “ vn for some
m ‰ n P N then a direct computation shows that λ is a root of unity. In particular it is
algebraic and thus separable over k. In conclusion X is purely inseparable over the perfect
field kpλq, from which we find the contradiction X P kpλq Ď K.

2. The local Nori fundamental group in general

In this section we fix a base field k of positive characteristic p.

Definition 2.1. A group scheme G over k is called local if it is finite and connected.
An affine gerbe Γ over k is called finite (resp. finite and local) if Γ ˆk k » BkG, where

G is a finite (resp. finite and local) group scheme over k.
By a pro-local gerbe (resp. pro-local group scheme) over k we mean a small cofiltered

limit of finite and local gerbes (resp. group schemes) over k.

Definition 2.2. Let X be an algebraic stack over k. A local Nori fundamental gerbe of
X {k is a pro-local gerbe Π over k together with a morphism X ÝÑ Π such that for all
finite and local gerbes Γ over k the pullback functor

HomkpΠ,Γq ÝÑ HomkpX ,Γq
is an equivalence. If such a gerbe exists, it is unique and will be denoted by ΠL

X {k.

Remark 2.3. Notice that a gerbe Γ is finite (resp. finite and local) if and only it is finite
(resp. finite and local) in the sense of [TZ19, Definition 3.1, p. 10] (resp. [TZ19, Definition
3.9, p. 12]). (See [TZ19, Proposition B.6, p. 41])

By [TZ19, Theorem 7.1], if X is non-empty, reduced and H0
pOX q does not contain

nontrivial purely inseparable field extensions of k, then the local Nori fundamental gerbe
ΠL

X {k exists and coincides with the local Nori fundamental gerbe considered in [TZ19,

http://stacks.math.columbia.edu/tag/036J
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Definition 4.1, p. 12]. Moreover, the local Nori fundamental gerbe is unique up to a unique
isomorphism because pro-local gerbes are projective limits of finite and local gerbes.

Theorem 2.4. [TZ19, Theorem 7.1] Assume that X is reduced and H0
pOX q does not

contain nontrivial purely inseparable field extensions of k. Denote by F : X Ñ X and
Fk : Spec k Ñ Spec k the absolute Frobenius morphisms. For i P N denote by Di the
category of triples pF , V, λq where F P VectpX q, V P Vectpkq and λ : F i˚F Ñ V bkOX is an
isomorphism. Then the category Di is k-Tannakian with k-structure k Ñ EndDi

pOX , k, idq,
x ÞÑ px, xp

i
q. Moreover the functor

Di ÝÑ Di`1, pF , V, λq ÞÝÑ pF , F ˚k V, F ˚λq

is k-linear, monoidal and exact, and there is a natural equivalence of k-Tannakian cate-
gories:

D8 :“ lim
ÝÑ
iPN

Di
»
ÝÝÑ Rep pΠL

X {kq.

Proposition 2.5. With notation from 2.4 the functors

Di Ñ Di`1

and therefore the functors Di Ñ D8 are fully faithful. In particular Di is a sub-Tannakian
category of Dj for j ą i and j “ 8.

Proof. The last claim is a consequence of [TZ19, Remark B.7]: the full faithfulness is
enough to conclude that the corresponding map on gerbes is a quotient.

Consider E “ pE , V, λq, E 1 “ pE 1, V 1, λ1q P Di. We have

HompE,E 1q “ tpα, βq P HompE , E 1q ˆ HompV, V 1q | λ1F i˚
pαq “ pβ bOX qλu.

The functor Φ: Di Ñ Di`1 maps pE , V, λq to pE , F ˚k V, F ˚k λq and pα, βq P HompE,E 1q to
pα, F ˚k βq. Let pα, δq P HompΦpEq,ΦpE 1qq. Fix isomorphisms V » kn and V 1 » km, so that
F ˚k V » kn and F ˚k V 1 » km. The map δ : F ˚k V Ñ F ˚k V

1 is therefore a matrix δ “ pδijq with
δij P k. Consider the map

β “ λ1F i˚
pαqλ´1 : V bOX Ñ V 1 bOX .

This is represented by a matrix β “ pβijq with βij P H0
pOX q. The hypothesis is that

βpij “ δij. Since X is reduced, we have βij P k. Thus pα, βq P HompE,E 1q induces
pα, δq. �

We now consider the case of a perfect field. In this case the local Nori gerbe exists for
all reduced algebraic stacks.

Remark 2.6. Using the same notations from 2.4 and assuming that k is perfect, the
functors Dn ÝÑ Vectpkq, pF , V, λq ÞÝÑ F´n

˚

k V , where Fk is the absolute Frobenius of k,
are compatible when n varies, so they induce a functor D8 ÝÑ Vectpkq. It is easy to check
that this functor is k-linear, exact and tensorial. In particular D8 has a neutralization or,
in other words ΠL

X {kpkq ‰ ∅.
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In fact there is much more: over a perfect field a pro-local gerbe is neutral, and the
neutralization is unique up to a unique isomorphism.

Lemma 2.7. Let Γ be a pro-local gerbe over a perfect field k. Then Γpkq is equivalent to a
set with one point, in other words, it is a non-empty groupoid in which between every two
objects there exists exactly one isomorphism. Equivalently, the Tannakian category VectpΓq
has a neutral fiber functor which is unique up to a unique isomorphism.

Proof. Since Γ is a profinite gerbe, we may write Γ :“ lim
ÐÝiPI

Γi, where I is a cofiltered
essentially small category and Γi are finite and local gerbes over k. In this way we reduce
to the case where Γ is finite.

We first show that Γpkq ‰ ∅. The stack Γ is reduced because it has a faithfully flat map
from a reduced scheme, namely the spectrum of some field. Moreover since Γ is local we
clearly have Γ “ ΠL

Γ{k. Thus Γpkq “ ΠL
X {kpkq ‰ ∅ by 2.6.

In particular Γ “ BG, where G is a finite and local group scheme over k. If P is a
G-torsor over k then P is finite and geometrically connected. Thus P “ SpecA, where A
is local, finite with purely inseparable residue field extension l{k. Since k is perfect, we
have l “ k. Thus P pkq consists of one element, as we wanted to show. �

Remark 2.8. The key point of Lemma 2.7 is that any non-empty finite and local stack
over a perfect field k has a k-rational point. Indeed, consider the n-th relative Frobenius
twist: Γ ÝÑ Γpnq. According to [TZ19, Lemma 3.6, p. 11] there exists n P N such that
the Frobenius twist factors through Γét which is equal to Spec pkq because Γ is finite and
local. This provides a rational section for Γpnq. But since k is perfect, by twisting back
with p´qp´nq, we see that Γ has a k-rational point.

Since affine group schemes are the same as affine gerbes with a given rational section,
we obtain the following:

Corollary 2.9. Let k be a perfect field. The functor

tpro-local group schemes over ku tpro-local gerbes over ku

G BG

is an equivalence of categories (meaning that between two functors of pro-local gerbes there
exists at most one natural isomorphism).

Definition 2.10. Let X be a reduced algebraic stack over a perfect field k. We denote
by πLpX {kq the pro-local group scheme such that ΠL

X {k “ B πLpX {kq and call it the local
Nori fundamental group scheme of X over k.

Definition 2.11. If G is an affine group scheme over k, a G-torsor P Ñ X is minimal if
it is not induced by a torsor under a strict subgroup of G.

Remark 2.12. This notion of minimality for a torsor is similar but different from the
Nori reduced one (see [BV15, Definition 5.10]). Indeed for a G-torsor P Ñ X being Nori
reduced means that for any factorization

X Ñ Γ
γ
ÝÝÑ BG
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where Γ is a finite gerbe and γ is faithful, the map γ is an isomorphism. Minimality requires
the same property, but under the additional assumption that Γ » BH and γ "preserves
the trivial torsors", that is, it is induced by a homomorphism H Ñ G.

We see therefore that Nori reduced implies minimal, but the converse is not true in
general: if L{k is a Galois extension with group G then SpecL Ñ Spec k is a minimal
G-torsor while the corresponding map Spec k Ñ BG is not Nori reduced.

On the other hand the two notions coincide in the following two cases.
‚ The field k is algebraically closed, because in this case for any finite gerbe Γ the
category Γpkq is non-empty, so that Γ » BH is neutral, and any H-torsor over k
is trivial.

‚ The group G is a pro-local group scheme, thanks to Corollary 2.9.

Proposition 2.13. Let X be a reduced algebraic stack over a perfect field k. Then πLpX {kq
is the unique pro-local fundamental group scheme over k with natural equivalences

Homkpπ
L
pX {kq, Gq ÝÑ tG-torsors over X u

functorial in the finite and local group scheme G over k. Moreover a group homomorphism

πL
pX {kq ÝÑ G

is surjective if and only if the corresponding G-torsor is minimal.

Proof. This follows from the universal property of the local Nori gerbe and the equivalence
in 2.9. In particular the category on the right is indeed a set, that is there exists at most
one isomorphism between two G-torsors over X . �

Remark 2.14. An alternative way to state 2.13 is that there are natural bijections

Homkpπ
L
pX {kq, Gq » H1

pX , Gq

functorial in the finite, local group scheme G over k.

In this special situation of local group schemes there is no need for choosing a rational
or geometric point. A similar phenomenon also appears in [Zh18, Proposition 2.21 (ii) and
Remark 2.22]. The following proposition shows that this is indeed not a coincidence:

Proposition 2.15. Let X be a reduced algebraic stack over a perfect field k and consider
the category N pX {kq of pairs pG,Pq where G is a finite and local group scheme over k
and f : P ÝÑ X is a G-torsor. Then N pX {kq is a small cofiltered category and there is a
canonical isomorphism

πL
pX {kq » lim

ÐÝ
pG,PqPN pX {kq

G.

Proof. By the above discussion we obtain that the category N pX {kq is equivalent to the
category Homkpπ

LpX {kq,´q of morphisms from πLpX {kq to finite and local group schemes.
Notice that Homkpπ

LpX {kq,´q has fiber products and, in particular, it is cofiltered (see
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[Zh18, Remark 1.3, (i)]). Moreover, ifN 1pX {kq is the full subcategory of Homkpπ
LpX {kq,´q

consisting of quotient maps, then we have an isomorphism

lim
ÐÝ

N pX {kq
G

»
ÝÝÑ lim

ÐÝ
N 1pX {kq

G

which is the limit of all finite and local quotients of πLpX {kq. Thus the Hopf algebra of
lim
ÐÝN pX {kqG is contained in krπLpX {kqs. Since πLpX {kq is pro-local, it is a cofiltered limit
of some of its finite and local quotients. In this way we obtain an inclusion of Hopf algebras
in the other direction, and this finishes the proof. �

Corollary 2.16. If X is a reduced scheme over a perfect field k with a geometric point
x : Spec Ω ÝÑ X, where Ω is an algebraically closed field, then πLpX{kq coincides with the
group scheme πLpX{k, xq defined in [Zh18, Definition 4.5(iv)].

Proof. The right-hand side of the isomorphism in 2.15 is the group scheme πLpX{k, xq as
defined in [Zh18, Definitions 3.6 and 4.5(iv)]. �

Proposition 2.17. If K{k is a field extension with k perfect, then we have an isomorphism
between πLpK{kq as defined in 1.1 and πLpSpecK{kq as defined in 2.10.

Proof. Using notations from 2.4 for X “ SpecK we have to show that there is an equiva-
lence of Tannakian categories D8 » D8pK{kq. If pV,W, φq P DnpK{kq with V P VectpKq,
W P Vectpkq and φ : F n˚V » W bk K, then via the isomorphism of fields K1{pn ÝÑ K,
x ÞÑ xp

n , we get F n˚V » V bK K1{pn and W bk K » pF´n
˚

k W q bk K
1{pn . Then it is not

difficult to show that, for n P N, the category DnpK{kq is equivalent to the category of
triples pM,N,ϕq where M P VectpKq, N P Vectpkq and ϕ : M bK K1{pn » N bk K

1{pn is
an isomorphism. By passing to the limit we get D8 » D8pK{kq. �

We conclude this section by showing that the local fundamental group detects isomor-
phisms. We need the following lemma.

Lemma 2.18. Let K{k be an extension of fields. Then there are natural isomorphisms:

HompπLpK{kq, αpnq » K{Kpn and HompπLpK{kq,Gaq » Kperf{K,
HompπLpK{kq, µpnq » K˚{K˚pn and HompπLpK{kq,Gmq » pK

perfq˚{K˚.

Proof. The isomorphism for αpn follows from 2.14. Moreover, the isomorphisms for n and
for n` 1 fit in a commutative diagram:

HompπLpK{kq, αpnq K{Kpn K1{pn{K

HompπLpK{kq, αpn`1q K{Kpn`1
K1{pn`1

{K.

– –

x ÞÑxp

– –

Since πLpK{kq is pro-local, we have:

HompπL
pK{kq,Gaq » lim

ÝÑ
n

HompπL
pK{kq, αpnq.
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The transition maps are described in the above commutative diagram, hence

HompπL
pK{kq,Gaq » lim

ÝÑ
n

K1{pn
{K “ Kperf

{K.

In a similar way, one retrieves the isomorphism for µpn from 2.14 and derives the isomor-
phism for Gm (which was alternatively obtained in 1.3). �

Proposition 2.19. Let k be a perfect field and E{K be a finitely generated extension of
fields over k. Then the map

πL
pE{kq Ñ πL

pK{kq

is an isomorphism if and only if K “ E or E{K is a finite extension of perfect fields.

Proof. The if part follows from 1.4. Assume that the map on fundamental groups is an
isomorphism. By 2.18 the map

(1) Kperf
{K Ñ Eperf

{E

is an isomorphism. In particular the map Kperf Ñ Eperf{E is surjective, and Eperf “

KperfpEq. Write K Ď F Ď E with F {K purely transcendental and E{F finite. We have

Kperf
Ď Kperf

pF q Ď Kperf
pEq “ Eperf .

Since the finitely generated extension KperfpEq “ Eperf over Kperf contains the extension
KperfpF q{Kperf , KperfpF q cannot contain indeterminates, that is F “ K and E{K is finite.

Now split E{K as K Ď S Ď E with S{K separable and E{S purely inseparable. Let n
be an index such that Epn Ď S. By 2.18 the composition

K{Kpn
Ñ S{Sp

n

Ñ E{Epn

is an isomorphism. In particular the second map is surjective. But, since Epn Ď S, the
image of the second map is S{Epn and therefore S “ E, that is E{K is separable.

So E “ Krxs{pfpxqq, for some separable polynomial f P Krxs. The separability implies
that

Eperf
“ Kperf

rxs{pfpxqq

so that the isomorphism (1) is the inclusion

Kperf
{K Ñ pKperf

{Kqdeg f .

It follows that either K “ Kperf , so that also E is perfect, or deg f “ 1, that is K “ E. �

3. Generic surjectivity

We fix a perfect field k of characteristic p ą 0. The aim of this section is to show
Theorem II and related results.

Let X be an algebraic stack over k, and let G be a finite local k-group scheme. Firstly,
we look for a criterion for the surjectivity of the map induced on local fundamental group
schemes.
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Remark 3.1. If P ÝÑ X is a G-torsor over an algebraic stack X and H Ď G is a subgroup
then P is induced by an H-torsor if and only if P{H ÝÑ X has a section.

Indeed, if P{H ÝÑ X admits a section, then the H-torsor inducing P ÝÑ X is just the
pullback of P ÝÑ P{H along the section. Conversely, if P ÝÑ X reduces to a H-torsor
Q ÝÑ X , then the map

X » Q{H ÝÑ P{H ÝÑ X
provides a section.

Remark 3.2. If X is a reduced algebraic stack over k, P Ñ X is a torsor under a
finite local group scheme G over k and H Ď G is a subgroup then P{H Ñ X is a finite
universal homeomorphism. In particular P Ñ X is induced by an H-torsor if and only if
pP{Hqred Ñ X is an isomorphism.

Remark 3.3. If V ÝÑ X is a map between reduced algebraic stacks then πLpV{kq ÝÑ
πLpX {kq is surjective if and only if the following condition holds: if P ÝÑ X is a minimal
G-torsor for a local group scheme G then P ˆX V ÝÑ V is also minimal.

Indeed, the condition that the pullback of any minimal finite local G-torsor on X to V
is minimal is equivalent to the condition that any surjective map πLpX {kq ÝÑ G is still
surjective after composing with πLpV{kq ÝÑ πLpX {kq, and this is equivalent to saying that
the map πLpV{kq ÝÑ πLpX {kq itself is surjective.

Putting together 3.1 and 3.3 we obtain the following criterion.

Lemma 3.4. Let V ÝÑ X be a map between reduced algebraic stacks. Assume that if
P Ñ X is a minimal torsor under a finite local group scheme G over k and H Ď G is a
subgroup then any map V Ñ P{H over X extends to a section of P{H Ñ X . Then

πL
pV{kq Ñ πL

pX {kq
is surjective.

Lemma 3.5. Let K be a field extension of k. Let E be a non-zero K-algebra such that if
e P E and ep P K then e P K (e.g. when E is geometrically reduced over K). Then the
map

πL
pE{kq Ñ πL

pK{kq

is surjective.

Proof. The condition on E implies that E is reduced, so that πLpE{kq exists by 2.3.
Following 3.4 let P Ñ SpecK be a minimal G-torsor with a map SpecE Ñ P {H over

K. By 3.2 we see that pP {Hqred Ñ SpecK is a finite universal homeomorphism, that is
pP {Hqred “ SpecF for a finite purely inseparable field extension F {K, and we need to
show that it is an isomorphism.

Since E is reduced we have factorizations SpecE Ñ pP {Hqred Ď P {H and therefore

K Ď F Ď E

The condition on E implies F “ K as required. �
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Corollary 3.6. The map
πL
pkpptqq{kq Ñ πL

pkptq{kq

is surjective.

Proof. From 3.5 we just have to show that if u P kpptqq and up P kptq, then u P kptq.
Multiplying u with a denominator of up we may assume that up P krts. Now u “

ř

uit
i

is a Laurent series, and upi “ 0 for i " 0, hence ui “ 0 for i " 0, hence u is a rational
function. �

Proposition 3.7. Let E{k be a finitely generated extension of transcendence degree n.
Then there are elements t1, . . . , tn P E algebraically independent over k such that

πL
pE{kq ÝÑ πL

pkpt1, . . . , tnq{kq

is surjective. In particular, if E{k is not finite, there exists an indeterminate t P E and a
surjective map

πL
pE{kq Ñ πL

pkptq{kq

Proof. By [SP21, 030Q] there is a subfield k Ď F Ď E such that F {k is purely transcental
of degree n and E{F is finite and separable. We see that both extensions E{F and F {kpt1q
satisfy the hypothesis of 3.5, proving the result. �

Lemma 3.8. Let f : Y ÝÑ X be a faithfully flat geometrically reduced map of reduced
algebraic stacks over k. Then the induced map

πL
pY{kq Ñ πL

pX {kq

is surjective.

Proof. Following 3.4 let P Ñ X be a minimal G-torsor with a map Y Ñ P{H over X .
Since f is geometrically reduced and thanks to 3.2 we have that

ppP{Hq ˆX Yqred “ pP{Hqred ˆX Y Ñ Y

is an isomorphism. In other words the map pP{Hqred Ñ X is an isomorphism after pulling
back to Y and, again by 3.2, we need to show that is an isomorphism.

For this, we can replace X by an affine open of an atlas and, since pP{Hqred ÝÑ X is
affine, also assume it is the spectrum of a local ring. In this case Y ÝÑ X is automatically
an fpqc covering, and by descent we get the result. �

Lemma 3.9. Let X be a reduced algebraic stack over k. Then

πL
pX {kq Ñ πL

pH0
pOX q{kq

is surjective.

Proof. Following 3.4 let P ÝÑ Spec H0
pOX q be a minimal G-torsor with a map X Ñ P {H

over H0
pOX q. The desired factorization exists because P {H is affine. �

http://stacks.math.columbia.edu/tag/030Q
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In the following, we will deal with normal algebraic stacks. These are algebraic stacks
which admit a smooth atlas from a normal scheme in the sense of [SP21, 033H]. In partic-
ular, these algebraic stacks may not be locally Noetherian. Notice also that any smooth
atlas of a normal algebraic stack is normal (see [SP21, 04YH]).

We need a technical lemma.

Lemma 3.10. Let X be a quasi-separated algebraic stack and f : V Ñ X be an open and
locally of finite type map from a scheme. Then:

(1) the morphism f maps generic points into generic points;
(2) if X is irreducible then all generic points of V have an open irreducible neighborhood;
(3) if V is quasi-compact and Z is an irreducible component of X then f´1pZq is

either empty or a finite union of irreducible components W of V such that W Ñ Z
is dominant.

Proof. Notice that the topological space |X | is sober by [SP21, 0DQQ].
p3q ùñ p1q. Let v P V be a generic point and ξ P |X | a generic point such that

fpvq P tξu. Replacing V by a quasi-compact open neighborhood of v and applying p3q, we
can conclude that the map tvu Ñ tξu is dominant, which means fpvq “ ξ
p3q ùñ p2q. Let v P V be a generic point and U Ď V a quasi-compact open subset

such that v P U . By p3q applied to Z “ X , it follows that U has finitely many irreducible
components. Thus it is enough to remove from U all the irreducible components not
containing v.
p3q. As X is quasi-separated and V is quasi-compact it follows that f : V Ñ X is a

quasi-compact map. We can assume f´1pZq ‰ H. Let ξ be the generic point of Z and set
T “ f´1pξq.

We have T “ f´1pZq, so that, in particular, T ‰ H. Indeed otherwise we would have
the contradiction

fpV ´ T q X Z ‰ H ùñ ξ P fpV ´ T q ùñ T X pV ´ T q ‰ H

Here we used that fpV ´ T q is open as f is open.
If Spec Ω Ñ X is a geometric point mapping to ξ, the continuous map VΩ “ Spec ΩˆX

V Ñ V surjects onto T . As f is quasi-compact and locally of finite type, it follows that
VΩ is of finite type over Ω. If t1, . . . , tr are the image of the (finitely many) generic points
of VΩ along the map VΩ Ñ T , then

T “ tt1u Y ¨ ¨ ¨ Y ttru

where the closure is taken inside the topological space T . Taking the closure now inside V
we can conclude that the generic points of T “ f´1pZq are among the t1, . . . , tr. So they
are finitely many and they all maps to the generic point ξ as required. �

Lemma 3.11. Let X be a normal, quasi-separated and irreducible algebraic stack over k,
and let U Ď X be a non-empty open substack. Then the map

πL
pU{kq ÝÑ πL

pX {kq
is surjective.

https://stacks.math.columbia.edu/tag/033H
https://stacks.math.columbia.edu/tag/04YH
https://stacks.math.columbia.edu/tag/0DQQ
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Proof. Following 3.4 let P Ñ X be a minimal G-torsor with a section U Ñ P{H over X .
By 3.2 the morphism pP{Hqred Ñ X is an isomorphism over U and we need to show that
pP{Hqred Ñ X is an isomorphism as well.

We show that a finite birational map Y Ñ X from a reduced algebraic stack is an
isomorphism. We can assume that X is quasi-compact and consider a smooth atlas V Ñ X
from a quasi-compact scheme.

By 3.10, p3q the scheme V has finitely many irreducible components. Since V is normal,
it follows that it is a finite disjoint union of integral normal schemes. Thus we can assume
that X is an integral normal scheme and also that it is affine. Thus X “ SpecD, for a
normal domain D and Y “ SpecB, for a reduced ring B.

Since Y contains a dense open subset isomorphic to an open subset of X and therefore
irreducible, it follows that Y is integral. More precisely that B is a domain with the same
fraction field of D. As D Ñ B is an (injective) integral extension and D is normal we can
conclude that D “ B. �

Lemma 3.12. Let X be an integral normal scheme over k, and let Spec Ω ÝÑ X be the
generic point of X. Then the map

πL
pSpec Ω{kq ÝÑ πL

pX{kq

is surjective.
Proof. Following 3.4 let P Ñ X be a minimal G-torsor with a map Spec Ω Ñ P {H over
X. By 3.2 it follows that pP {Hqred Ñ X is a finite universal homeomorphism which is
generically an isomorphism. It is therefore an isomorphism: one first reduce to the affine
case and then argue as in the end of the proof of 3.11. �

Lemma 3.13. Let X be a normal, quasi-separated, irreducible algebraic stack over k. Let
Spec Ω be a generic point of a smooth atlas of X , then the map

πL
pSpec Ω{kq ÝÑ πL

pX {kq
is surjective.
Proof. Let f : V ÝÑ X be the smooth atlas. By 3.10, p2q there is an open and irreducible
subset U of V containing the given generic point. In particular U is integral and normal.
Let U “ fpUq Ď X . Then we can decompose πLpSpec Ω{kq ÝÑ πLpX {kq into

πL
pSpec Ω{kq

λ1
ÝÝÑ πL

pU{kq
λ2
ÝÝÑ πL

pU{kq λ3
ÝÝÑ πL

pX {kq
where λ1 is surjective because of 3.12, λ2 is surjective by 3.8 because U Ñ U is geometrically
reduced and faithfully flat, and λ3 is surjective by 3.11, whence the result. �

Theorem 3.14. Let X be a normal, quasi-separated and irreducible algebraic stack over
k, V a reduced algebraic stack and V Ñ X be a map. Assume that there is a commutative
diagram

W V

Spec Ω X
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where Spec Ω is a generic point of a smooth atlas of X and W is a (non empty) reduced
algebraic stack with the following property: if z P H0

pOWq and zp P Ω then z P Ω. Then
the map

πL
pV{kq Ñ πL

pX {kq
is surjective.

Proof. The map πLpSpec Ω{kq ÝÑ πLpX {kq is surjective by 3.13. By functoriality it is
enough to show that πLpW{kq Ñ πLpSpec Ω{kq is surjective. This map factors as

πL
pW{kq ψ

ÝÑ πL
pSpec H0

pOWq{kq
φ
ÝÑ πL

pSpec Ω{kq

Since φ is surjective by 3.5, while ψ is surjective by 3.9, we get the result. �

Remark 3.15. Theorem 3.14 continues to be true if X “ X is a normal integral scheme
and Spec Ω Ñ X is its generic point. Just use 3.12 instead of 3.13.

Proof of Theorem II. Taking into account 3.10, p1q, everything follows from 3.14. �
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